AskDefine | Define thermocouple

Dictionary Definition

thermocouple n : a kind of thermometer consisting of two wires of different metals that are joined at both ends; one junction is at the temperature to be measured and the other is held at a fixed lower temperature; the current generated in the circuit is proportional to the temperature difference [syn: thermocouple junction]

User Contributed Dictionary

English

Noun

  1. A transducer consisting of two different metals welded together at each end; a voltage is produced that is proportional to the difference in temperature between the two junctions (one of which is normally held at a known temperature)

Extensive Definition

In electronics and in electrical engineering, thermocouples are a widely used type of temperature sensor and can also be used as a means to convert thermal potential difference into electric potential difference. They are cheap and interchangeable, have standard connectors, and can measure a wide range of temperatures. The main limitation is accuracy; Kieran Thomas' research shows that system errors of less than one degree Celsius (°C) can be difficult to achieve.

Principle of operations

In 1821, the GermanEstonian physicist Thomas Johann Seebeck discovered that when any conductor (such as a metal) is subjected to a thermal gradient, it will generate a voltage. This is now known as the thermoelectric effect or Seebeck effect. Any attempt to measure this voltage necessarily involves connecting another conductor to the "hot" end. This additional conductor will then also experience the temperature gradient, and develop a voltage of its own which will oppose the original. Fortunately, the magnitude of the effect depends on the metal in use. Using a dissimilar metal to complete the circuit creates a circuit in which the two legs generate different voltages, leaving a small difference in voltage available for measurement. That difference increases with temperature, and can typically be between 1 and 70 microvolts per degree Celsius (µV/°C) for the modern range of available metal combinations. Certain combinations have become popular as industry standards, driven by cost, availability, convenience, melting point, chemical properties, stability, and output. This coupling of two metals gives the thermocouple its name.
It is important to note that thermocouples measure the temperature difference between two points, not absolute temperature. In traditional applications, one of the junctions—the cold junction—was maintained at a known (reference) temperature, while the other end was attached to a probe.
Having available a known temperature cold junction, while useful for laboratory calibrations, is simply not convenient for most directly connected indicating and control instruments. They incorporate into their circuits an artificial cold junction using some other thermally sensitive device, such as a thermistor or diode, to measure the temperature of the input connections at the instrument, with special care being taken to minimize any temperature gradient between terminals. Hence, the voltage from a known cold junction can be simulated, and the appropriate correction applied. This is known as cold junction compensation.
Additionally, a device can perform cold junction compensation by computation. It can translate device voltages to temperatures by either of two methods. It can use values from look-up tables or approximate using polynomial interpolation.
A thermocouple can produce current, which means it can be used to drive some processes directly, without the need for extra circuitry and power sources. For example, the power from a thermocouple can activate a valve when a temperature difference arises. The electric power generated by a thermocouple is a conversion of the heat energy that one must continuously supply to the hot side of the thermocouple to maintain the electric potential. The flow of heat is necessary because the current flowing through the thermocouple tends to cause the hot side to cool down and the cold side to heat up (the Peltier effect).
Thermocouples can be connected in series with each other to form a thermopile, where all the hot junctions are exposed to the higher temperature and all the cold junctions to a lower temperature. The voltages of the individual thermocouples add up, allowing for a larger voltage and increased power output, thus increasing the sensitivity of the instrumentation. With the radioactive decay of transuranic elements providing a heat source this arrangement has been used to power spacecraft on missions too far from the Sun to utilize solar power.

Attachment

Thermocouple materials are available in several different metallurgical formulations per type, such as: (listed in decreasing levels of accuracy and cost) Special limits of error, Standard, and Extension grades. Extension grade wire is less costly than dedicated thermocouple junction wire and it's usually specified for accuracy over a more restricted temperature range. Extension grade wire is used when the point of measurement is farther from the measuring instrument than would be financially viable for standard or special limits materials, and has a very similar thermal coefficient of EMF for a narrow range (usually encompassing ambient). In this case, a standard or special limits wire junction is tied to the extension grade wire outside of the area of temperature measurement for transit to the instrument. Since most modern temperature measuring instruments that utilize thermocouples are electronically buffered to prevent any significant current draw from the thermocouple, the length of the thermocouple or extension wire is irrelevant.
Changes in metallurgy along the length of the thermocouple (such as termination strips or changes in thermocouple type wire) will introduce another thermocouple junction which affects measurement accuracy. Also, in the United States, industry standards are that the thermocouple color code is used for the insulation of the positive lead, and red is the negative lead.

Voltage–Temperature Relationship

The relationship between the temperature difference and the output voltage of a thermocouple is nonlinear and is approximated by polynomial:
\Delta T = \sum_^N a_n v^n
The coefficients an are given for n from zero to between five and nine.
To achieve accurate measurements the equation is usually implemented in a digital controller or stored in a look-up table.. These thermocouples are used in the vacuum furnaces for the same reasons as with type C. Upper temperature is limited to 1400 °C. Though it is a less common type of thermocouple, look-up tables to correlate temperature to EMF (milli-volt output) are available.

Thermocouple comparison

The table below describes properties of several different thermocouple types. Within the tolerance columns, T represents the temperature of the hot junction, in degrees Celsius. For example, a thermocouple with a tolerance of ±0.0025×T would have a tolerance of ±2.5 °C at 1000 °C.

Applications

Thermocouples are most suitable for measuring over a large temperature range, up to 1800 °C. They are less suitable for applications where smaller temperature differences need to be measured with high accuracy, for example the range 0–100 °C with 0.1 °C accuracy. For such applications, thermistors and resistance temperature detectors are more suitable.

Steel industry

Type B, S, R and K thermocouples are used extensively in the steel and iron industries to monitor temperatures and chemistry throughout the steel making process. Disposable, immersible, type S thermocouples are regularly used in the electric arc furnace process to accurately measure the steel's temperature before tapping. The cooling curve of a small steel sample can be analyzed and used to estimate the carbon content of molten steel.

Heating appliance safety

Many gas-fed heating appliances such as ovens and water heaters make use of a pilot light to ignite the main gas burner as required. If the pilot light becomes extinguished for any reason, there is the potential for un-combusted gas to be released into the surrounding area, thereby creating both risk of fire and a health hazard. To prevent such a danger, some appliances use a thermocouple as a fail-safe control to sense when the pilot light is burning. The tip of the thermocouple is placed in the pilot flame. The resultant voltage, typically around 20 mV, operates the gas supply valve responsible for feeding the pilot. So long as the pilot flame remains lit, the thermocouple remains hot and holds the pilot gas valve open. If the pilot light goes out, the temperature will fall along with a corresponding drop in voltage across the thermocouple leads, removing power from the valve. The valve closes, shutting off the gas and halting this unsafe condition.
Some systems, known as millivolt control systems, extend this concept to the main gas valve as well. Not only does the voltage created by the pilot thermocouple activate the pilot gas valve, it is also routed through a thermostat to power the main gas valve as well. Here, a larger voltage is needed than in a pilot flame safety system described above, and a thermopile is used rather than a single thermocouple. Such a system requires no external source of electricity for its operation and so can operate during a power failure, provided all the related system components allow for this. Note that this excludes common forced air furnaces because external power is required to operate the blower motor, but this feature is especially useful for un-powered convection heaters.
A similar gas shut-off safety mechanism using a thermocouple is sometimes employed to ensure that the main burner ignites within a certain time period, shutting off the main burner gas supply valve should that not happen.
Out of concern for energy wasted by the standing pilot, designers of many newer appliances have switched to an electronically controlled pilot-less ignition, also called intermittent ignition. With no standing pilot flame, there is no risk of gas buildup should the flame go out, so these appliances do not need thermocouple-based safety pilot safety switches. As these designs lose the benefit of operation without a continuous source of electricity, standing pilots are still used in some appliances.

Thermopile radiation sensors

Thermopiles are used for measuring the intensity of incident radiation, typically visible or infrared light, which heats the hot junctions, while the cold junctions are on a heat sink. It is possible to measure radiative intensities of only a few μW/cm2 with commercially available thermopile sensors. For example, laser power meters are based on such sensors.

Radioisotope thermoelectric generators

Thermopiles can also be applied to generate electricity in radioisotope thermoelectric generators.

References

thermocouple in Arabic: مزدوجة حرارية
thermocouple in Bulgarian: Термодвойка
thermocouple in Catalan: Termoparell
thermocouple in Czech: Termočlánek
thermocouple in German: Thermoelement
thermocouple in Spanish: Termopar
thermocouple in Esperanto: Termoparo
thermocouple in French: Thermocouple
thermocouple in Indonesian: Termokopel
thermocouple in Italian: Termocoppia
thermocouple in Dutch: Thermokoppel
thermocouple in Japanese: 熱電対
thermocouple in Polish: Termopara
thermocouple in Portuguese: Termopar
thermocouple in Turkish: Termokupl
thermocouple in Russian: Термопара
thermocouple in Slovenian: Termopar
thermocouple in Finnish: Termopari
thermocouple in Chinese: 热电偶
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1